
Web2cHMI: A Multi-Modal Native User Interface Implementation for Accelerator
Operations and Maintenance Applications

Reinhard Bacher
Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany

(Dated: January 2nd, 2017)

The advent of advanced mobile, gaming and virtual or augmented reality devices provides users
with novel interaction modalities. Speech, finger- and hand gesture recognition are commonly used
technologies, often enriched with data from embedded gyroscope-like motion sensors and 3D graphi-
cal visualization features. This paper discusses potential use cases of those native user interface tech-
nologies in the field of accelerator operations and maintenance. It describes the conceptual design
and implementation of a native, single-user, multi-modal human-machine interface (Web2cHMI )
which seamlessly incorporates actions based on various modalities in a single API. Web2cHMI be-
longs to the Web2cToolkit framework which is briefly introduced. Finally, an outlook to future
development steps and potential consequences is presented.

I. NATIVE USER INTERFACE EXPERIENCE

Zooming applications by performing a pinch gesture at
touch-sensitive displays, talking with the personal assis-
tant to retrieve information from the internet, or control-
ling video games through a gaming console recognizing
arm and body motions are all popular and intuitive inter-
face features currently in common use. Moreover virtual
or augmented (mixed) reality applications providing e.g.
a real three-dimensional user experience are enjoying in-
creasing popularity. These technologies, well known in
the consumer market, have extremely enriched the way
in which people interact with their devices.

Even in the rather conservative market of industrial
applications, native user interface technologies are gain-
ing in importance, e.g. to simplify quality assurance of
manufacturing processes in the car or aircraft industry or
to improve the efficiency of warehouse logistics or main-
tenance work in machine building industry.

In addition, a novel concept known as “App”, opti-
mized for these unique technological features, has been
introduced, which has revolutionized the conceptual de-
sign, look-and-feel and handiness of graphical user appli-
cations. Prominent features of app-like user applications
include replacing complex menu trees by intuitive navi-
gation or browsing patterns and focusing solely on task-
specific contents by hiding all information not relevant to
these cases.

Hardware commissioning and maintenance use cases
might profit from such novel interaction capabilities
(modalities). For instance the alignment of mirrors
mounted on an optical table to adjust a laser beam spot
often requires a “third hand”. Interacting with control
applications via spoken commands could be an appropri-
ate alternative. Likewise wearing rough and dirty work-
ing gloves during cooling water maintenance work is not
adequate for touch sensitive devices. Interacting via hand
or arm gestures might be a better choice. Accessing on-
line documentation or viewing virtual 3D-models is of-
ten indispensable for efficient inspection work. Wearing
see-through augmented reality glasses controlled by head

movements, hand or arm gestures or spoken commands
displaying routing schemes alongside with control appli-
cations or overlaying schematics could substantially im-
prove measurement operations or maintenance work in
the field.

Even control room work provides use cases for novel
interaction modalities. Remote-controlling an overhead
mounted screen showing some overview or control appli-
cation panels might be considerably simplified by recog-
nizing spatial gestures such as clenching a fist or snapping
fingers. Beam steering requires uninterrupted eye contact
with trend charts or other display updates. Controlling
a virtual knob by recognizing hand rotation or moving a
virtual slider providing tactile feedback could eliminate
the risk of losing device focus which often happens with
mouse-based operations.

Todays youth are more than familiar with these novel
interaction capabilities and app-like user applications.
Providing up-to-date tools for future control room oper-
ators and maintenance technicians appears to be a must.
It will foster the acceptance of native user interaction
technologies for accelerator operations and maintenance
and quickly widen the list of corresponding use cases.

II. USER INPUT DEVICES

With the advent of ubiquitous mobile communication
and entertainment as well as considerably improved opti-
cal projection and graphics processing capabilities novel
native interaction devices have found their way into the
consumer and industrial market. This includes

• Single- or multi-touch sensitive displays available
for desktop, notebook or tablet computers and
smart phones,

• Optical sensors capable of tracking movements and
recognizing gestures such as Leap motion controller
(Fig. 1a) [1] or Microsoft Kinect motion controller
(Fig. 1b) [2], wearables with muscle activity sensors
like the Myo gesture control armband (Fig. 1c) [3],



2

(a) Leap motion controller
(b) MS Kinect motion controller

(c) Myo gesture control armband

(d) Ultrahaptics UHDK5
(e) Vuzix M100

(f) MS HoloLens

FIG. 1: Native input devices

or multi-axis gyro sensors embedded e.g. in smart
phones or head-mounted displays,

• Camera-based eye-tracking and attentive environ-
ments analysing video and audio recordings,

• Ultrasonic actors providing tactile feedback, e.g.
Ultrahaptics UHDK5 (Fig. 1d) [4],

• Miniaturized classical optical projection devices
(e.g. pico projectors), and advanced projection
systems integrated into personal eyeglasses such as
Zeiss Digital Smart Lens [5],

• See-through augmented reality devices with embed-
ded camera and multi-axis gyro sensor (e.g. Goggle
Glass [6], Epson Moverio BT-200 [7], Vuzix M100
(Fig. 1e) [8], Microsoft HoloLens (Fig. 1f) [9]), and

• Powerful cloud-based speech recognition systems
used by Apple Siri [10], Google Now [11], or Mi-
crosoft Cortana [12]) and stand-alone speech recog-
nition systems such as the CMU Sphinx-4 toolkit
[13].

III. BASIC CONSIDERATIONS

Today’s users of accelerator control applications have
developed intuitions based on click-like interactions. In
an accelerator control room the mouse is still the stan-
dard user input device to interact with graphical appli-
cations. Being well accepted by the operators it pro-
vides a very accurate pointing capability and standard-
ized user actions normally associated with graphical wid-
gets. Mouse-based or single-finger touch-based interac-
tions are highly reliable unambiguous single-user actions.

They are best suited for complex applications containing
a wealth of graphical widgets or tree-like menu struc-
tures.

Thus the introduction of any new interaction capabil-
ity will be accompanied by a serious paradigm change re-
garding how software programmers design graphical op-
erations and maintenance applications and how operators
or maintenance personnel interact with them.

A. Gesture-Based Interaction

Spatial hand- and arm gestures, as well as multi-finger
touch-based gestures, provide only a rough pointing ca-
pability, and experience shows that the users arm tends
to fatigue quickly, a phenomenon known as “gorilla arm”.
In addition head gestures such as turning or nodding
might also be considered. However, not all head gestures
are equally suitable and might cause symptoms similar
to travel sickness. The handiness of gestures might also
profit from tactile feedback, e.g. simulating a virtual
knob.

In practice only a very limited number of gesture types
are available which are partially standardized and not a
priori associated with graphical widgets. Consequently
the design and look-and-feel of applications must accom-
modate these restrictions.

In general gestures are less precise and might be per-
formed slightly differently by varying persons. They tend
to be less reliable and might require a specific arming and
disarming procedure to prevent the user from unwanted
interaction.

Spatial gestures are not limited to single-user interac-
tion only. It depends on the technology of the gesture
recognition device used how many gestures from differ-
ent persons can be tracked individually. The Myo gesture



3

control armband worn at the users forearm represents a
true single-user device while Microsofts Kinect motion
controller is capable to handle various gestures even from
different individuals at the same time.

B. Speech-Based Interaction

In contrast to other interaction modalities the recogni-
tion of spoken commands does not provide any pointing
capability at all.

On the one hand the huge word pool of human lan-
guages is a clear plus factor. On the other hand the
context-dependent ambiguity of the vocabulary (e.g. the
term mouse describes both an animal and a computer
peripheral device) and the accent- or dialect-dependence
of human speech pose a big challenge for the recogni-
tion algorithms involved. The latter might even require
an individual training of the speech recognition system
involved.

Video conferencing experience shows that from the au-
dio technical point of view the recognition of spoken com-
mands as well as the reliable identification of the speaker
might suffer from ambient noise and the interference
of multi-user inputs. Wearing high-quality microphones
based on bone conduction or specific noise filtering and
cancelation technologies might be preferable. Advanced
augmented reality glasses such as Microsoft’s HoloLens
provide already excellent speech recognition capability.

Limiting the allowed vocabulary or grammar structure
is preferable to achieve reliable spoken command recogni-
tion ability and ensuring an unambiguous word-to-action
mapping. Similar to gesture recognition a specific arm-
ing and disarming procedure is capable of preventing the
user from unwanted interaction.

C. Application Design Criteria

Due to the limited number of available gestures or spo-
ken commands, a multi-page application design consis-
tent with the app concept, where each page provides a
well-confined and standardized functionality with an un-
ambiguous input-to-action mapping, appears to be best
suited. In addition, both a clearly arranged option to
launch applications and a handy and intuitive procedure
to browse between pages and applications have to be pro-
vided.

Supporting and combining different input modalities
at the same time such as tracking of head or eye move-
ments and speech-based interactions might considerably
enhance the performance and reliability of native user
interfaces.

D. Sociological Issues

Daily experience shows that many individuals tend
to use their mobile devices without any inhibitions in
a public but anonymous environment. However, con-
trol room or maintenance work is typically performed by
small groups of individuals. Consequently, it is expected
that the wish to preserve individual privacy and the po-
tential impact on the communication between team mem-
bers might become an issue for using native user interface
technologies.

IV. IMPLEMENTATION

This section reports ongoing R&D work and de-
scribes a Web-based native user interface implementation
(Web2cHMI ) for accelerator operations and maintenance
applications in the context of the Web2cToolkit Web ser-
vice collection [14].

A. Web2cToolkit Web Service Collection

The Web2cToolkit is a collection of Web services, i.e.
servlet applications and the corresponding Web browser
applications, including

• Web2cViewer : Interactive synoptic live display
to visualize and control accelerator or beam line
equipment,

• Web2cViewerWizard : Full-featured graphical edi-
tor to generate and configure synoptic live displays,

• Web2cArchiveViewer : Web form to request data
from a control system archive storage and to display
the retrieved data as a chart or table,

• Web2cArchiveViewerWizard : Full-featured graph-
ical editor to generate and configure archive viewer
displays,

• Web2cToGo: Interactive display especially de-
signed for mobile devices embedding instances of
all kinds of Web2cToolkit Web client applications,

• Web2cGateway : Application programmer interface
(HTTP-gateway) to all implemented control sys-
tem interfaces,

• Web2cManager : Administrators interface to con-
figure and manage the Web2cToolkit.

Web2cToolkit provides a user-friendly look-and-feel
and its usage does not require any specific program-
ming skills. By design, the Web2cToolkit is platform
independent. Its services are accessible through the
HTTP/HTTPS protocol from every valid network ad-
dress if not otherwise restricted. A secure single-sign-on



4

user authentication and authorization procedure with en-
crypted password transmission is provided. The Web 2.0
paradigms and technologies used include a Web server, a
Web browser, HTML5 (HyperText Markup Language),
CSS (Cascading Style Sheets), AJAX (Asynchronous
JavaScript And XML) and WebSocket.

The Web2cToolkit client applications are coded in na-
tive JavaScript or in Java within the Google Web Toolkit
framework [15] finally compiled to HTML- / CSS-tags
and JavaScript code. They are running in the clients
native Web browser or in a Web browser embedded in a
mobile app or desktop application. This approach is com-
patible with almost all major browser implementations
including mobile versions. The server-side Web2cToolkit
services are provided by Java servlets running in the
Web servers Java container. The communication be-
tween client and server is asynchronous. All third-party
libraries used by the Web2cToolkit are open-source.

The Web2cToolkit provides interfaces to major acceler-
ator and beam line control systems including TINE [16],
DOOCS [17], EPICS [18], TANGO [19] and STARS [20].
The toolkit is capable of receiving and processing video
frames or a continuous series of single images.

B. Web2cToGo

The Web2cToGo Web client application embeds
Web2cToolkit-compliant Web client applications. Each
application may consist of multiple pages. At most fif-
teen applications can be launched at a single time. The
user can switch between the different applications to se-
lect the active application as well as between the different
pages of the active application to select the active visible
application page. All inactive applications or application
pages are hidden.

Web2cToGo has three different views. The Explorer
View (Fig. 2) displays a set of icons to select a user ap-
plication. It provides launching or displaying of already
launched but currently hidden user applications. In ad-
dition it indicates the currently available modalities and
the corresponding arming status.

Switched to Operation View (Fig. 4) the Web2cToGo
client application displays the active application and al-
lows interacting with the graphical widgets of the appli-
cation.

The Navigation View (Fig. 3) previews the selected
user application. It allows switching between user appli-
cations, switching to Explorer or Operation View, closing
the current user application, browsing between applica-
tion pages, and zooming, resizing or scrolling pages of
user applications.

C. Web2cHMI

Web2cHMI is a Web-based, platform-neutral, single-
user human-machine interface which seamlessly combines

actions based on various modalities provided by input de-
vices commonly available from the consumer market. All
input modalities supported can be used simultaneously
including

• 1D/2D flat gestures including single- and multi-
finger gestures

• 2D/3D spatial gestures including hand- and arm-
gestures

• 3D head movements including yaw, pitch and roll

• English spoken commands.

The Web2cHMI API comprises all actions needed to
control Web2cToolkit-compliant Web applications such
as application browsing, display zooming or executing
commands associated with interactive graphical widgets.
Web2cToGo implements and provides a test environ-

ment for identifying intuitive and handy user actions as
well as investigating the proper structure, design and op-
erability of multi-modal accelerator operations and main-
tenance applications.

1. Supported User Input Devices

Web2cHMI supports various user input devices includ-
ing

• Mouse

• Touch-sensitive display

• Leap motion controller

• Myo gesture control armband

• Epson Moverio BT-200 smart glass

• Vuzix M100 smart glass

• Microphone

The Leap motion controller and the Myo gesture con-
trol armband are connected locally with their corre-
sponding host device (desktop, notebook or tablet com-
puters) through USB and Bluetooth, respectively. The
raw sensor signals are processed by a local Web server
which communicates with the Web2cHMI via Web Sock-
ets. Both smart glasses supported provide gyroscope-
based head tracking capability. CMU Spinx-4 includes
a speaker-independent continuous speech recognition en-
gine and is entirely written in Java programming lan-
guage.

All gesture-capable devices provide orientation data
being used to position a virtual cursor label at an applica-
tion window. Unlike mice or touch-sensitive displays ges-
ture recognition devices such as Leap motion controller,
Myo gesture control armband or smart glasses with head
tracking capability do not allow an accurate positioning
of the cursor label.



5

FIG. 2: Web2cToGo (Explorer View)

FIG. 3: Web2cToGo (Navigation View)

2. Supported User Input Actions

Web2cHMI recognizes various primitive, i.e. input
device-specific gestures including

• Mouse: Click, Move

• Touch-sensitive display: Tap, Move / Swipe, Pinch
(two fingers)

• Leap motion controller: Key-Tap, Swipe, Open-
Hand, Closed-Hand, Circle

• Myo gesture control armband: Double-Tap, Wave-
Out / Wave-In, Fingers-Spread, Fist

• Smart glass: Move-Fast / Move-Slow, Roll

In addition, enriched gestures formed by primitive ges-
tures followed by moves or rotations etc. are supported.
Examples are Fingers-Spread & Clockwise Rotation or
Sideward-Left Long Swipe. If applicable or required by
ergonomics principles, different gestures may be applied
by right or left handed individuals.

The CMU Sphinx-4 speech recognition system knows
a Web2cHMI -specific vocabulary listed in a dictionary
containing the decomposition of the words in distinct
phonemes. Phonemes are the basic units of sound which
can be ultimately identified by the speech recognition
engine. In addition pre-defined grammar rules are used



6

FIG. 4: Web2cViewer embedded in Web2cToGo application (Operation View)

to enhance the recognition performance and reliability of
spoken commands such as “Browse Up” or “Lot More”.

If a user input has been successfully recognized the
next user input recognition is momentarily inhibited
while the cursor label is fixed to the center of the ap-
plication window to notify the user (gesture input only).

In addition to avoiding unwanted responses to uninten-
tional user input, the recognition ability must be armed
and disarmed explicitly by the user:

• Leap motion controller: Key-Tap / Key-Tap

• Myo gesture control armband: Double-Tap /
Double-Tap

• Smart glass: Clockwise-Roll - Counter-Clockwise-
Roll / Counter-Clockwise-Roll - Clockwise-Roll

• Microphone: “Ok” / “Sleep”

3. Software Architecture

Web2cHMI analyses user actions recorded by any
modality-specific input device attached and maps the
recognized gestures, spoken commands, head movements
or even mouse clicks etc. through the Common Multi-
Modal Human-Machine Interface to unambiguous API
commands.

The API commands are used to control both the
Web2cToGo framework application itself and the em-
bedded Web2cToolkit-compliant Web applications. Fig.
5 sketches the user input data-flow within Web2cToGo.
Besides speech recognition which is performed by the
Web2cToGo servlet (Java) at the Web server all
recognition algorithms are implemented as client-side

JavaScript modules being executed by an HTML5-
compliant Web browser. Commands dedicated to an
embedded Web2cViewer or Web2cArchiveViewer appli-
cation are redirected at server side to the corresponding
Web application client and handled in exactly the same
way as direct mouse- or touch-based user input (Fig. 6).

4. API Examples

Following the proposed multi-page concept providing a
well-confined and standardized functionality (see section
Application Design Criteria) each Web2cViewer applica-
tion page might contain a single widget instance of each
of the following interactive widget types (Fig. 4). Ac-
cording to their type, the interactive widgets are capable
of performing a specific, predefined user action such as
opening a vacuum valve or changing a set value of a power
supply:

• On-type Button (user action = “On”)

• Off-type Button (user action = “Off”)

• Slider (user action = “Change Set Value”)

• Chart (user action = “Zoom Data”)

In addition a page might contain an unlimited number
of passive Web2cViewer widgets such as labels or value
fields.

Triggered by each of the following user actions recorded
by the corresponding input device the common API com-
mand “Change Set Value Small Positive Step” increases
a set value of an attached controls device in small steps
using a slider widget in a Web2cViewer interactive syn-
optic live display:



7

FIG. 5: Web2cToGo / Web2cHMI user input data flow

FIG. 6: Web2cToolkit application / Web2cHMI user input data flow

• Mouse: Click “>”-button and Click “Set Value”-
button of the slider widget

• Touch-sensitive display: Tap “>”-button and Tap
“Set Value”-button of the slider widget (right or
left hand)

• Leap motion controller: Downward Long Swipe
(right or left hand)

• Myo gesture control armband: Fist & Clockwise
Rotation (right or left arm)

• Smart glass: Upward Left-Tilted Move-Slow

• Microphone: “More”

Similarly, sets of interactive widgets have been defined
for Web2cArchiveViewer application pages (Fig. 7). For
instance the common API command “Single Chart Get
Data” requests data from control system archive storage
to be displayed in a single chart page of a multi-page
Web2cArchiveViewer application in response to each of
the following user actions:

• Mouse: Click on “Get Data” button



8

FIG. 7: Data chart page of multi-page Web2cArchiveViewer application

• Touch-sensitive display: Tap on “Get Data” button
(right or left hand)

• Leap motion controller: Downward Long Swipe
(right or left hand)

• Myo gesture control armband: Wave-In & Down-
ward Move (right or left arm)

• Smart glass: Downward Move-Fast

• Microphone: “Download”

A compilation of all API commands implemented by
Web2cHMI can be found elsewhere [21].

V. FINAL REMARKS

The work described in this paper is still an R&D
project. It explores only a limited fraction of capabilities
provided by native user interface input devices available
for consumer and industrial applications. It is inspired
and abetted by a growing number of use cases and tech-
nological developments in this field. Thus it is expected
that the acceptance level of native user interaction tech-
nologies will steadily increase in the future.

The applicability of native user interaction technolo-
gies for accelerator controls and maintenance has to be
studied in detail.

• To compete successfully with standard mouse-
based interactions performant gesture and speech
recognition procedures have to be provided which
are reliable under any circumstances even in a

multi-user or in an otherwise disturbed environ-
ment.

• Well-designed user application concepts best suited
for advanced interaction devices providing novel in-
terface features and environments have to be devel-
oped or explored. The optimal combination of dif-
ferent modalities and the most intuitive, most com-
mon and best matching sets of gestures and spoken
commands have to be defined and the usefulness
and potential predominance of this approach have
to be explored and proved in real field tests.

• In addition, it is an open issue how a future con-
trol room might look. Will it be a camera super-
vised collective multi-user attentive environment or
rather an environment for operators wearing indi-
vidual single-user augmented reality glasses? It is
obvious that along with operational and technical
issues sociological issues must be considered as well.

Finally, the next steps to introduce these novel in-
teraction technologies for accelerator operations and
maintenance have to be discussed. Is an intermediate
step preferable, for instance providing user applications
adapted for touch pads or interactive tables yet keeping
the traditional application look-and-feel? The work de-
scribed in this paper is consistent with this approach. Or
should a larger step be taken, where mouse-click inter-
actions are omitted entirely, thereby skipping the famil-
iar mouse-centric application design pattern e.g. imple-
mented by Microsoft HoloLens-compliant applications?

ACKNOWLEDGMENTS

The author thanks P. Duval (DESY) for carefully read-
ing the manuscript.



9

[1] Leap Motion Inc., “Leap Motion Controller”, https://
www.LEAPmotion.com (2017), Last accessed: 2017-01-02.

[2] Microsoft Corporation, “Microsoft Kinect Motion Con-
troller”, https://developer.microsoft.com/en-us/

windows/kinect (2017), Last accessed: 2017-01-02.
[3] Thalmic Labs Inc., “Myo Gesture Control Armband”,

https://www.myo.com (2017), Last accessed: 2017-01-02.
[4] Ultrahaptics, “UHDK5 Touch Development

Kit”, https://www.ultrahaptics.com/products/

touch-development-kit (2017), Last accessed: 2017-
01-02.

[5] Carl Zeiss AG, “Zeiss Smart Lenses Get Right What
Google Glass Got So Wrong”, https://www.wired.com/
2016/01/zeiss-smart-glasses (2017), Last accessed:
2017-01-02.

[6] Google Inc., “Google Glass Head-Mounted Display”,
https://developers.google.com/glass (2017), Last
accessed: 2017-01-02.

[7] Epson Inc., “Moverio BT-200 Augmented
Reality Smartglass”, https://epson.com/

moverio-augmented-reality (2017), Last accessed:
2017-01-02.

[8] Vuzix Corporation, “M100 Smartglass”, https://www.

vuzix.com/Products/m100-smart-glasses (2017), Last
accessed: 2017-01-02.

[9] Microsoft Corporation, “Microsoft HoloLens Mixed
Reality Smartglass”, https://www.microsoft.com/

microsoft-hololens (2017), Last accessed: 2017-01-02.
[10] Apple Inc., “Apple Siri Personal Assistant”, https://

www.apple.com/ios/siri (2017), Last accessed: 2017-
01-02.

[11] Google Inc., “Google Now Personal Assistant”, https:

//www.google.com/search/about/features/01 (2017),
Last accessed: 2017-01-02.

[12] Microsoft Inc., “Microsoft Cortana Personal Assistant”,
https://www.microsoft.com/en/mobile/experiences/

cortana (2017), Last accessed: 2017-01-02.
[13] Carnegie Mellon University, “CMU Sphinx-4 Open

Source Speech Recognition Toolkit”, http://cmusphinx.
sourceforge.net (2017), Last accessed: 2017-01-02.

[14] R. Bacher, “Web2cToolkit Framework for Web-
based Controls Clients”, http://web2ctoolkit.desy.de
(2017), Last accessed: 2017-01-02.

[15] Google Inc., “Google Web Toolkit Open Source
Project”, http://www.gwtproject.org (2017), Last ac-
cessed: 2017-01-02.

[16] P. Duval et al., “Threefold Integrated Network Envi-
ronment”, http://tine.desy.de (2017), Last accessed:
2017-01-02.

[17] K. Rehlich et al., “Distributed Object Oriented Control
System”, http://doocs.desy.de (2017), Last accessed:
2017-01-02.

[18] The EPICS Collaboration, “Experimental Physics and
Industrial Control System”, http://www.aps.anl.gov/

epics (2017), Last accessed: 2017-01-02.
[19] The Tango Collaboration, “Tango Controls”, http://

www.tango-controls.org (2017), Last accessed: 2017-
01-02.

[20] T. Kosuge et al., “Simple Transmission and Retrieval
System”, http://stars.kek.jp (2017), Last accessed:
2017-01-02.

[21] R. Bacher, “Web2cHMI Documentation”, http:

//web2ctoolkit.desy.de/Web2cHMI/Web2cHMI.pdf

(2017), Last accessed: 2017-01-02.


